已知a<b,若二次函數y=ax2+bx+c不在x軸的下方,試求
a+b+cb−a 的最小值。
用MathJax打題目的目的是為了測試搜尋功能是否能夠找到文章的國字內容,測試的結果是可以!
∵二次函數y=ax2+bx+c不在x軸的下方 ∴ax2+bx+c≧0......第(1)式。
令 a+b+cb−a =k,移項可得a+b+c=kb−ka
整理得知(k+1)a+(1−k)b+c=0......第(2)式
比較兩式可得{x2=k+1x=1−k
解聯立(1−k)2=k+1⇒1−2k+k2=k+1⇒k2−3k=0⇒k=0 or 3
∵a<b,若二次函數y=ax2+bx+c不在x軸的下方 ∴開口朝上b>a>0且c≧0
故a+b+c>0⇒k≠0,k=3
沒有留言:
張貼留言